Bias-Variance Tradeoff

Bias-Variance Tradeoff

Definition

Total Error = Bias² + Variance + Irreducible errors

Bias of an estimator is the the “expected” difference between its estimates and the true values in the data. (High Bias -> Overfitting)

Bias[g(xₒ)] = E[g(xₒ)] − f(xₒ)

Variance of an estimator is the “expected” value of the squared difference between the estimate of a model and the “expected” value of the estimate(over all the models in the estimator). (High Variance -> Underfitting)

Var[g(xₒ)] = E[(g(xₒ) − E[g(xₒ)])²]

Bias Variance Decomposition

Err(xₒ) = E[(Y − g(xₒ))² | X = xₒ]

= E[(f + ϵ − g)²]

= E[ϵ²] + E[(f − g)²] + 2·E[(f − g)ϵ]

= E[(ϵ − 0)²] + E[(f − E[g] + E[g] − g)²] + 2·E[fϵ] − 2·E[gϵ]

= E[(ϵ − E[ϵ])²] + E[(f − E[g] + E[g] − g)²] + 0 − 0

= Var(ϵ) + E[(g − E[g])²] + E[(E[g] − f)²] + 2·E[(g − E[g])(E[g] − f)]

= Var(ϵ) + Var(g) + Bias(g)² + 2·{E[g]² − E[gf] − E[g]² + E[gf]}

= σ² + Var(g) + Bias(g)²

Written on June 1, 2020